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Abstract
We consider the bilevel knapsack problem with interdiction constraints, a fundamental bilevel inte-

ger programming problem which generalizes the 0-1 knapsack problem. In this problem, there are two
knapsacks and n items. The objective is to select some items to pack into the first knapsack such that
the maximum profit attainable from packing some of the remaining items into the second knapsack is
minimized. Previous exact methods for solving this problem make use of mixed-integer linear program-
ming solvers. We present a combinatorial branch-and-bound algorithm which outperforms the current
state-of-the-art solution method in computational experiments by 4.5 times on average for all instances
reported in the literature. Our algorithm is simple: a basic implementation takes less than 200 lines
of code. More drastic performance improvements are seen for more challenging instances: on 20% of
instances, our algorithm is at least 64 times faster, and we solved 53 of the 72 previously unsolved in-
stances. Our result relies fundamentally on a new dynamic programming algorithm which computes very
strong lower bounds. This dynamic program relaxes the problem from bilevel to 2n-level by ordering the
items and solving an online version of the problem. The relaxation is easier to solve but approximates
the original problem surprisingly well in practice. We believe that this same technique may be useful for
other interdiction problems.

1 Introduction
Bilevel integer programming (BIP), a generalization of integer programming (IP) to two-round two-player
games, has been increasingly studied due to its wide real-world applicability [KLLS21, Dem20, SS20]. In the
BIP model, there are two IPs, called the upper level and lower level, which share some variables between
them. The objective is to optimize the upper level IP but with the constraint that the shared variables
must be optimal for the lower level IP. Due to this optimality constraint, most BIPs cannot be modeled
as IPs without using an exponential number of constraints and/or variables. As such, BIPs are generally
considered very hard to solve, compared to IPs: the problem of solving a general BIP is Σp

2-complete, whereas
the problem of solving a general IP is only NP-complete (equivalently, Σp

1-complete) [DeN11, CCLW14].
In the literature, sometimes the upper level is referred to as the leader’s problem and the lower level

as the follower’s problem. These terms come from the theory of Stackelberg games, from which bilevel
programming originated [VS52]. For consistency, in this paper we exclusively use the terms upper and lower.

Recent advancements in BIP solvers have made it possible to solve larger, more complex BIPs, but
it is recognized that there is still room for improvement [SS20, KLLS21]. In particular, problem-specific
algorithms far outpace general BIP algorithms. Due to the difficulty of creating strong general-purpose BIP
solvers, there is interest in further developing problem-specific algorithms as a means to develop insight into
the general case. In this paper we focus on the bilevel knapsack problem with interdiction constraints (BKP),
which was introduced by DeNegre in 2011 [DeN11]. This problem is a natural extension of the 0-1 knapsack
problem (KP) to the bilevel setting.

The term interdiction is used to describe bilevel problems in which the upper level IP has the capability
to block access to some resources used by the lower level IP. The upper level is typically interested in blocking
resources in a way that produces the worst possible outcome for the lower level IP. For instance, the resources
may be nodes or edges in a graph, or items to be packed into a knapsack. These problems often arise in
military defense settings (e.g., see [SS20]).
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BKP is considered to be a fundamental Σp
2-complete bilevel problem. In fact, it is currently the only

Σp
2-complete problem which is known to admit a polynomial-time approximation scheme [CWZ22]. Given

that “the knapsack problem is believed to be one of the ‘easier’ NP-hard problems,” [Pis05] one may propose
(particularly after seeing our results section) that BKP is one of the ‘easier’ Σp

2-hard problems. However,
unlike KP, which admits a psuedopolynomial time algorithm, BKP remains NP-complete when the input is
described in unary and thus has no psuedopolynomial time algorithm unless P = NP [CCLW14]. For these
reasons, it is of great interest to develop fast algorithms for solving BKP so that the nature of BIPs and the
class of Σp

2-complete problems can be better understood.
Intuitively, BKP can be thought of as a two player game where each player has a knapsack which they can

pack some items into. Each item has some associated profit value. The players are selecting from the same
collection of items, but the items may have different weight depending on which player picks them, and the
two knapsacks may also have different capacity. The objective is for the upper-level player (first player) to
pack some items into their knapsack so that the maximum profit that the lower-level player (second player)
can achieve using the remaining items is minimized. The upper-level player has no regard for the profit of
the items they choose; they are only interested in minimizing profit for the lower-level player.

Formally, the problem is defined as follows. A problem instance consists of n items. Each item i ∈
{1, . . . , n} has an associated profit pi ∈ Z>0, upper-level weight wU

i ∈ Z>0 and lower-level weight wL
i ∈ Z≥0.

The upper-level knapsack has capacity CU ∈ Z≥0 and the lower-level knapsack has capacity CL ∈ Z≥0.
Notice that we assume that the profits p and upper level weights wU are non-zero, but the lower level
weights wL are permitted to be zero. We define U to contain all feasible sets of items for the upper-level
knapsack, and given some X ∈ U , we define L(X) to contain all feasible sets of items (excluding items
in X) for the lower-level knapsack. Finally, we define some notation: for a vector x and set S we let
x(S) :=

∑
i∈S xi. The problem BKP can then be stated as follows:

min
X∈U

max
Y ∈L(X)

p(Y ) (objective)

where U =
{
X ⊆ {1, . . . , n} : wU (X) ≤ CU

}
, (upper level)

and L(X) =
{
Y ⊆ {1, . . . , n} \X : wL(Y ) ≤ CL

}
. (lower level)

We call a solution (X,Y ) feasible if X ∈ U and Y ∈ argmax{p(Ŷ ) : Ŷ ∈ L(X)}. A solution (X,Y ) is optimal
if it minimizes p(Y ) over all feasible pairs. Note that given X, determining whether Y ∈ argmax{p(Ŷ ) : Ŷ ∈
L(X)} amounts to solving a 0-1 knapsack problem, so determining feasibility is already weakly NP-Hard.

Along with introducing the problem, DeNegre designed a general purpose branch-and-cut framework for
mixed-integer bilevel programs and evaluated the approach on BKP instances with up to 15 items [DeN11].
Since then, solution methods have been gradually improved over a series of papers. In 2016, the first
BKP-specific algorithm, the CCLW algorithm, was developed [CCLW16]. This algorithm was able to solve
instances with up to 50 items, but could not solve some instances with 55 items within an hour. Later
that same year, a new general purpose branch-and-cut algorithm was introduced in [TRS16] which was able
to solve instances with up to 30 items. The following year, a paper [FLMS17] introduced a new general-
purpose algorithm called MIX++ which achieves better performance compared to [TRS16]. The 2019 paper
[FLMS19] develops a branch-and-cut algorithm for a class of interdiction problems which generalizes BKP.
Their approach is able to solve the 55-item instances which [CCLW16] could not solve. A very recent paper
[LBC22] considers reformulating the lower-level problem as a shortest path problem by constructing a binary
decision diagram, so that the bilevel problem can be written as a single MIP. This approach is tested on
BKP instances with up to 50 items and has good performance compared to other general-purpose methods,
especially when the item weights and capacities are small.

All of these papers consider instances which were generated in an uncorrelated fashion, meaning that
weights and profits were chosen uniformly at random with no correlation between the values. It is well
known that uncorrelated KP instances are some of the easiest types of instances to solve [Pis05]. Similarly,
current algorithms are able to solve uncorrelated BKP instances much faster than correlated instances. A
heuristic approach proposed in [FMS18] was the first to consider a variety of correlated BKP instances. In
particular, they consider instances where the profit pi is very close to the lower-level weight wL

i for all i.
In 2018, Della Croce and Scatamacchia published a BKP-specific algorithm which they tested on all

known instances as well as newly generated instances containing up to 500 items [DCS20]. Their algorithm
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Algorithm 1: Main branch and bound algorithm for BKP.
Precondition: (X∗, Y ∗) is a feasible solution and z∗ = p(Y ∗) (see Section 2.2).

1 function BranchAndBound(X, i)
2 if i = n+ 1 then
3 Y ← argmax{p(Y ) : Y ∈ L(X)};
4 if p(Y ) < z∗ then X∗ ← X, Y ∗ ← Y, z∗ ← p(Y );
5 return;

6 if BoundTest(X, i) then return;
7 if X ∪ {i} ∈ U then BranchAndBound(X ∪ {i}, i+ 1);
8 BranchAndBound(X, i+ 1);

is significantly stronger than the previous approaches. We refer to this algorithm as the DCS algorithm.
While the DCS algorithm is able to solve uncorrelated instances with 500 items in less than a minute, the
performance drops significantly even for weakly correlated instances, and most strongly correlated instances
remain unsolved after an hour of compute time. This performance is reminiscent of earlier KP algorithms such
as expknap [Pis95], which could quickly solve uncorrelated instances but struggled with strongly correlated
instances.

All BKP solution methods discussed so far rely fundamentally on MIP solvers. In this paper, we present
a simple combinatorial branch-and-bound algorithm for solving BKP. Our algorithm improves on the per-
formance of the DCS algorithm for 95% of instances, with a speedup by orders of magnitude in many cases.
Furthermore, our algorithm appears to be largely impervious to correlation: it solves strongly correlated
instances with ease, only significantly slowing down when the lower-level weights equal the profits (i.e., the
subset sum case). In Section 2, we describe our algorithm. Our algorithm relies fundamentally on a new
strong lower bound computed by dynamic programming which we present in Section 3. Section 4 details
our computational experiments, demonstrating that our algorithm outperforms the previous state-of-the-art
approach, the DCS algorithm. We conclude in Section 5 with some directions for future research.

2 A combinatorial algorithm for BKP
In this section we describe our exact solution method for BKP. At a high level, the algorithm is essentially
just standard depth-first branch-and-bound. Our strong lower bound, defined later in Section 3, is essential
for reducing the search space. To begin formalizing this, we first define the notion of a subproblem.

Definition 1. A subproblem (X, i) consists of some i ∈ {1, . . . , n + 1} and set of items X ⊆ {1, . . . i − 1}
such that X ∈ U .

Note that this definition depends on the ordering of the items, which throughout the paper we assume
to be such that

p1
wL

1

≥ p2
wL

2

≥ · · · ≥ pn
wL

n

with ties broken by placing items with larger pi first. These subproblems will form the nodes of the branch-
and-bound tree; (∅, 1) is the root node, and for every X ∈ U , (X,n+1) is a leaf. Every non-leaf subproblem
(X, i) has the child (X, i + 1), which represents omitting item i from the upper-level solution. Non-leaf
subproblems (X, i) with X ∪ {i} ∈ U have an additional child (X ∪ {i}, i + 1) which represents including
item i in the upper-level solution.

The algorithm simply starts at the root and traverses the subproblems in a depth-first manner, preferring
the child (X ∪ {i}, i + 1) if it exists because it is more likely to lead to a good solution. Every time the
search reaches a leaf (X,n + 1), we solve the knapsack problem max{p(Y ) : Y ∈ L(X)} to get a feasible
solution. If this solution improves upon our best solution seen so far, then we replace the best solution with
it. At each subproblem we perform a bound test using the best solution in combination with a lower bound
to determine if the subproblem can be pruned. This algorithm is stated formally as the BranchAndBound
function in Algorithm 1.
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2.1 The bound test
The purpose of the bound test is to prune subproblems from the search that cannot lead to an improved
solution. As with any branch and bound algorithm, the bound test is key to achieving good performance. In
this section we assume that z∗ is an upper bound on the objective value. We will see how the initial upper
bound is computed in Section 2.2. At a high level, the bound test works as follows. Given a subproblem
(X, i) we compute a lower bound on the profit achievable by leaves in the subtree rooted at (X, i). If this
lower bound is at least z∗, then we know that no descendant of (X, i) could possibly improve upon z∗, so we
prune (X, i).

The lower bound is computed in three steps: (1) we solve a knapsack problem on items {1, . . . , i−1}\X,
(2) we compute a lower bound for BKP restricted to items {i, . . . , n}, and (3) we combine (1) and (2) into
a lower bound for the descendants of (X, i).

For step (1), we define a function K(X, c) as the optimal value of the knapsack problem with weights
wL, profits p, and capacity c, but restricted to not use items in X:

K(X, c) = max
{
p(Y ) : Y ⊆ {1, . . . , n} \X and wL(Y ) ≤ c

}
.

For step (2), we need a function ω(i, cU , cL) which is a lower bound on BKP but with upper-level capacity
cU , lower-level capacity cL, and restricted to items {i, . . . , n}. So, formally, ω must satisfy

ω(i, cU , cL) ≤ min{K(X ∪ {1, . . . , i− 1}, cL) : X ⊆ {i, . . . , n}, wU (X) ≤ cU}.

We will define precisely what ω is in Section 3; for now, we only need to know that it has this property. We
now prove the following lemma, which describes how to combine steps (1) and (2) into (3), a lower bound
for the descendants of a subproblem (X, i).

Lemma 1. Let (X, i) be a subproblem. For all c ∈ {0, . . . , CL},

K (X ∪ {i, . . . , n}, c) + ω
(
i, CU − wU (X), CL − c

)
≤ min {p(Y ′) : (X ′, Y ′) is feasible for BKP and X ′ ∩ {1, . . . , i− 1} = X} .

Proof. Let (X, i) be a subproblem and let c ∈ {0, . . . , CL}. By definition,

K(X ∪ {i, . . . , n}, c) + ω(i, CU − wU (X), CL − c)

≤K(X ∪ {i, . . . , n}, c) + min{K(X ′ ∪ {1, . . . , i− 1}, CL − c) : X ′ ⊆ {i, . . . , n}, wU (X ′) ≤ CU − wU (X)}
≤ min{K(X ∪X ′, CL) : X ′ ⊆ {i, . . . , n}, wU (X ′) ≤ CU − wU (X)}
= min{K(X ∪X ′, CL) : X ′ ⊆ {i, . . . , n}, wU (X ′ ∪X) ≤ CU}
= min{p(Y ′) : (X ′, Y ′) is feasible for BKP and X ′ ∩ {1, . . . , i− 1} = X}.

From this, it follows that for any c ∈ {0, . . . , CL}, if we have

K (X ∪ {i, . . . , n}, c) + ω
(
i, CU − wU (X), CL − c

)
≥ z∗

then we can prune subproblem (X, i) because it would be impossible for any leaf which is a descendant of
(X, i) to correspond with a feasible solution of objective value less than z∗. Because performing this test is
computationally expensive, in our bound test we first try a variant of the test in which a greedy solution is
used in place of K (X ∪ {i, . . . , n}, c). We define the test formally by the function BoundTest in Algorithm 2
and prove correctness in the following lemma.

Lemma 2. If BoundTest(X, i) returns true, then subproblem (X, i) can be pruned in Algorithm 1.

Proof. Consider the greedy algorithm on Lines 1 to 4 of Algorithm 2. This algorithm finds a feasible solution
with weight wg and profit pg for the knapsack problem with weights wL, profits p, and capacity CL but
restricted to items in {1, . . . , i − 1} \ X. Therefore, pg ≤ KP (X ∪ {i, . . . , n}, wg), so by Lemma 1 the
function only returns true on Line 4 if subproblem (X, i) can be pruned. The correctness of Line 7 follows
immediately from Lemma 1.

4



Algorithm 2: Returns true if the subproblem (X, i) can be pruned.
Precondition: z∗ is an upper bound

1 function BoundTest(X, i)
2 wg, pg ← 0;
3 for j = 1, . . . , i− 1 do
4 if j /∈ X and wg + wL

j ≤ CL then wg ← wg + wL
j , pg ← pg + pj ;

5 if pg + ω(i, CU − wU (X), CL − wg) ≥ z∗ then return true;
6 for c = 0, . . . , CL do
7 if K(X ∪ {i, . . . , n}, c) + ω(i, CU − wU (X), CL − c) ≥ z∗ then return true;

8 return false;

This concludes the main description of the bound test, but there is an important consideration regarding
the efficient implementation of Algorithm 2. We may assume that ω is precomputed and takes constant
time to query. The greedy part of the bound test (Lines 1 to 4) appears to require time O(n). However,
considering the recursive structure of BranchAndBound, the values wg and pg can be computed in time O(1)
given their values for the parent subproblem. In a similar manner, we do not need to solve an entire knapsack
problem every time BoundTest is called to determine K(X ∪ {i, . . . , n}, c). Instead, it is only necessary to
compute a single row of a knapsack dynamic programming table (i.e., fill in all CL capacity values for the
row associated with item i) from the row computed in the parent subproblem. By doing this, the entire
BoundTest function will run in time O(CL). Furthermore, when the branch-and-bound reaches a leaf, the
knapsack solution needed in Line 3 of Algorithm 1 will already have been found by the bound test; all that
is needed is to recover it by traversing the dynamic programming table.

2.2 Computing initial bounds
In our algorithm, a strong initial upper bound z∗ can help decrease the size of the search tree. For this
we use a simple heuristic we call the greedy heuristic, which is defined as the function GreedyHeuristic
in Algorithm 3. This heuristic finds a feasible solution for BKP: suppose (X∗, Y ∗, z∗) is the output of
GreedyHeuristic; then, since X∗ ∈ U and Y ∗ ∈ argmax{p(Y ) : Y ∈ L(X∗)}, (X∗, Y ∗) is feasible for
BKP with objective value z∗. Hence, z∗ is an upper bound. This heuristic can be computed by solving
two knapsack problems, which can be done efficiently with an algorithm such as combo [MPT99]. We now
establish a case in which the greedy heuristic actually returns an optimal solution.

Lemma 3. GreedyHeuristic() returns an optimal solution if there exists an optimal solution (X,Y ) for
BKP where Y = {1, . . . , n} \X.

Proof. We denote X := {1, . . . , n} \ X. Let (X,Y ) be an optimal solution for BKP where Y = X. We
claim that X ∈ argmax{p(X) : X ∈ U}. If not, then there is some X ′ ∈ U with p(X ′) > p(X). Let
Y ′ ∈ argmax {p(Y ) : Y ∈ L(X ′)}. Then

p(Y ′) ≤ p(X ′) < p(X) = p(Y )

so (X ′, Y ′) contradicts the optimality of (X,Y ). Now, if GreedyHeuristic() returns a solution (X ′, Y ′)
which is suboptimal for BKP, we reach a contradiction:

p(X) = p(Y ) < p(Y ′) ≤ p(X ′) = p(X)

In previous work, it has been noted that BKP is very easily solved for such instances [DCS20, CCLW16].
Intuitively, this case occurs when the lower-level capacity is large enough that the lower level can pack all
items given any upper-level solution, or when the upper-level capacity is large enough that the upper level
can pack all items. As we will see in Section 3, the time and space complexity of our strong lower bound
ω is O(nCUCL), so when the capacities are large we would like to avoid computing it at all if possible.
Therefore, to detect this case, we use a simpler lower bound: a polynomially sized LP formulation suggested
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Algorithm 3: Greedy heuristic.

1 function GreedyHeuristic()
2 X∗ ← argmax {p(X) : X ∈ U}; // use a knapsack algorithm such as combo [MPT99]
3 Y ∗ ← argmax {p(Y ) : Y ∈ L(X∗)};
4 return (X∗, Y ∗, p(Y ∗));

Algorithm 4: Solves BKP.

1 global X∗, Y ∗, z∗ ← GreedyHeuristic();
2 if z∗ ≤ min {LB(c) : 1 ≤ c ≤ n} then output (X∗, Y ∗, z∗); // initial bound test (optional)
3 BranchAndBound(∅, 1);
4 output (X∗, Y ∗, z∗);

by Della Croce and Scatamacchia [DCS20]. In their paper, they define a formulation denoted CRITLP
1 (c),

which we have simplified into the below formulation LB(c) that is sufficient for our purposes. We remark
that the use of this LP means our algorithm is not purely combinatorial. However, this LP is an optional
part of our algorithm which only provides a performance increase in some easy cases.

LB(c) = min
∑c−1

i=1 pi(1− xi)

such that
∑c−1

i=1 w
U
i xi ≤ CU

CL − wL
c + 1 ≤

∑c−1
i=1 w

L
i (1− xi) ≤ CL

0 ≤ x ≤ 1

x ∈ Rc−1

If the LP is infeasible for some c, we define LB(c) = ∞. The following lemma enables us to detect some
cases where the greedy heuristic is optimal.

Lemma 4. Suppose GreedyHeuristic() returns (X,Y, z). If z ≤ min {LB(c) : 1 ≤ c ≤ n} then (X,Y ) is
optimal for BKP.

Proof. By Lemma 3, if an optimal solution (X∗, Y ∗) exists where Y ∗ = {1, . . . , n}\X∗, then (X,Y ) is optimal.
Otherwise, there must be an optimal solution (X∗, Y ∗) for which c∗ = min{c :

∑
i/∈X∗ : i≤c w

L
i > CL}

exists. Let x ∈ {0, 1}c∗−1 be such that xi = 1 if and only if i ∈ X∗ for 1 ≤ i ≤ c∗ − 1. Then x is
feasible for LB(c∗), so LB(c∗) ≤

∑c∗−1
i=1 pi(1 − xi) ≤ p(Y ∗) and therefore min {LB(c) : 1 ≤ c ≤ n} is a

lower bound. Since z is an upper bound, either (X,Y ) is optimal because z = min {LB(c) : 1 ≤ c ≤ n}, or
z > min {LB(c) : 1 ≤ c ≤ n}.

To achieve good performance from this lower bound, it is necessary to sort the items beforehand as
described at the beginning of Section 2. Furthermore, note that it is not necessary to compute LB(c) for
every choice of c as some options can be easily ruled out. For brevity, we omit this minor detail here and
refer readers to the original paper [DCS20].

Putting everything together, we arrive at Algorithm 4.

Theorem 1. Algorithm 4 correctly solves BKP.

Proof. By Lemma 4, Algorithm 4 only outputs (X∗, Y ∗, z∗) on Line 2 if (X∗, Y ∗, z∗) is optimal. Otherwise,
since BranchAndBound enumerates all upper-level solutions except those pruned by BoundTest (which we
proved correctness for in Lemma 2), it will either reach some optimal leaf and update (X∗, Y ∗, z∗) accordingly,
or prove that the (X∗, Y ∗, z∗) returned by GreedyHeuristic actually was optimal (despite that it could not
be proved by Line 2).
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3 Lower bound
In this section we define the lower bound ω(i, cU , cL) that we use in our algorithm. Recall that ω(i, cU , cL)
must lower bound the restriction of BKP where we can only use items {i, . . . , n}, have upper-level capacity
cU , and lower-level capacity cL. In our branch-and-bound algorithm, this lower bound may be queried for
a very large number of different parameter values (possibly most values of 1 ≤ i ≤ n, 0 ≤ cU ≤ CU and
0 ≤ cL ≤ CL). The lower bound from [DCS20] is strong but requires solving as many as n IPs to find
the lower bound for just a single set of parameters (i, cU , cL), so it would be very inefficient to use this
lower bound for ω. We instead introduce a new lower bound based on dynamic programming (DP), which
computes ω(i, cU , cL) for all parameter values with time and space complexity O(nCUCL).

Perhaps the most obvious way to compute a lower bound suiting our needs is to solve a modified version
of BKP which uses a greedy solution to the lower-level knapsack problem, i.e., the lower level processes items
from 1 to n and always takes an item when there is enough remaining capacity to do so. It is not hard to see
why this is a lower bound: a greedy lower-level solution will always achieve profit at most that of an optimal
lower-level solution. We can compute this lower bound with the following recursively-defined DP algorithm:

ωg(i, c
U , cL) =



∞ if cU < 0,

0 if cU ≥ 0, cL ≥ 0 and i > n,

ωg(i+ 1, cU , cL) if cU ≥ 0, wL
i > cL and i ≤ n.

min

{
ωg(i+ 1, cU − wU

i , c
L),

ωg(i+ 1, cU , cL − wL
i ) + pi

}
if cU ≥ 0, wL

i ≤ cL and i ≤ n.

Here, the first case, cU < 0, is used to force the min expression in the fourth case not to pick a choice which
goes above the upper-level capacity. The second case, where cU ≥ 0, cL ≥ 0 and i > n, simply terminates
the recursion when there are no items left to process. The third case skips any item which cannot fit in
the lower-level knapsack, as it would be pointless for the upper level to take such an item. The fourth case
considers the decision of whether the upper level should take item i, blocking the lower level from taking it,
or whether the lower level should take it (the lower level has no option to ignore the item when following
the greedy algorithm).

This lower bound already has very good performance in practice, as demonstrated in Section 4.3 (see
algorithm Comb-Weak). However, we can do better by making a deceptively simple modification: giving
the lower level the option to ignore an item, while otherwise keeping the structure of the DP algorithm the
same. This modification produces our strong DP lower bound, ω, described as follows:

ω(i, cU , cL) =



∞ if cU < 0,

−∞ if cL < 0,

0 if cU ≥ 0, cL ≥ 0 and i > n,

min


ω(i+ 1, cU − wU

i , c
L),

max

{
ω(i+ 1, cU , cL − wL

i ) + pi,

ω(i+ 1, cU , cL)

} if cU ≥ 0, cL ≥ 0 and i ≤ n.

It is not a hard exercise to show that ωg(i, c
U , cL) ≤ ω(i, cU , cL) for all 1 ≤ i ≤ n, 0 ≤ cU ≤ CU and

0 ≤ cL ≤ CL. Extrapolating our intuition about ωg, formulation ω appears to actually find optimal lower-
level solutions, so one might guess that ω(1, CU , CL) is actually optimal for BKP, if it weren’t that this is
impossible unless P = NP [CCLW14]. The subtlety is that by giving the lower level a choice of whether to
take an item, we have also given the upper level the power to react to that choice. Specifically, the upper
level choice of whether to take item i can depend on how much capacity the lower level has used on items
{1, . . . , i− 1}. Evidently, this is not permitted by the definition of BKP, which dictates that the upper level
solution is completely decided prior to choosing the lower level solution. However, as we will see in Section 4,
this actually gives the upper level an extremely small amount of additional power in practice.

The lower bound ω may also be interpreted as a relaxation from a 2-round game to a 2n-round game.
This may seem to be making the problem more difficult, but each round is greatly simplified, so the problem
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becomes easier to solve. This 2n-round game is as follows. Assume that an ordering of the items is fixed.
The game starts at round 1. In round 2i− 1, the leader (the upper level player) decides whether to include
the item i. In round 2i, the follower (the lower level player) responds to the leader’s decision in round 2i−1:
if the leader does not include item i, then the follower decides whether to include item i; if the leader does
include item i, then the follower has no choice to make and the game progresses immediately to round 2i+1.
The score of the game is simply the total profit of all items chosen by the follower. It is straightforward to
see that the minimax value of this game (i.e., the score given that both players follow an optimal strategy)
is equal to ω(1, CU , CL).

We now show formally that ω(1, CU , CL) lower bounds the optimal objective value of BKP. To this end
we define ωX , a modified version of ω where instead of the minimization in the case where cU ≥ 0, cL ≥ 0
and i ≤ n, the choice is made depending on whether i ∈ X for some given set X.

ωX(i, cU , cL) =



∞ if cU < 0,

−∞ if cL < 0,

0 if cU ≥ 0, cL ≥ 0 and i > n,

ωX(i+ 1, cU − wU
i , c

L) if cU ≥ 0, cL ≥ 0, i ≤ n and i ∈ X,

max

{
ωX(i+ 1, cU , cL − wL

i ) + pi,

ωX(i+ 1, cU , cL)

}
if cU ≥ 0, cL ≥ 0, i ≤ n and i /∈ X.

With this simple modification, we claim that ωX(1, CU , CL) = max{p(Y ) : Y ∈ L(X)} (and similarly for
other i, cU , and cL). To formalize this, we show that ωX and K (as defined in Section 2.1) are equivalent in
the following sense.

Lemma 5. For all 1 ≤ i ≤ n, X ⊆ {i, . . . , n}, cU ≥ wU (X) and cL ≥ 0,

ωX(i, cU , cL) = K(X ∪ {1, . . . , i− 1}, cL).

Proof. Given that cU ≥ wU (X), the case cU < 0 can not occur in the expansion of ωX(i, cU , cL), so
ωX(i, cU , cL) = ωX(i,∞, cL). Consider the 0-1 knapsack problem with profits p′ and weights w′ formed by
taking p′ = p and w′ = wL except with p′j = w′

j = 0 for items j ∈ X. We can then simplify the definition of
ωX(i,∞, cL) by using p′ and w′ to effectively skip items in X:

ωX(i,∞, cL) =


−∞ if cL < 0,

0 if cL ≥ 0 and i > n,

max

{
ωX(i+ 1,∞, cL − w′

i) + p′i,

ωX(i+ 1,∞, cL)

}
if cL ≥ 0 and i ≤ n.

The recursive definition of ωX(i,∞, cL) above describes the standard DP algorithm for 0-1 knapsack with
capacity cL, profits p′ and weights w′ but restricted to items {i, . . . , n}; this is the same problem which is
solved by K(X ∪ {1, . . . , i− 1}, cL).

We now establish that ω(i, cU , cL) is a lower bound as desired.

Theorem 2. For all 1 ≤ i ≤ n, cU ≥ 0 and cL ≥ 0,

ω(i, cU , cL) ≤ min
X⊆{i,...,n} :wU (X)≤cU

K(X ∪ {1, . . . , i− 1}, cL).

Proof. By definition, ωX(i, cU , cL) =∞ if wU (X) > cU , so

min
X⊆{i,...,n}

ωX(i, cU , cL) = min
X⊆{i,...,n} :wU (X)≤cU

ωX(i, cU , cL)

= min
X⊆{i,...,n} :wU (X)≤cU

K(X ∪ {1, . . . , i− 1}, cL). (by Lemma 5)
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Therefore, it suffices to show that ω(i, cU , cL) ≤ minX⊆{i,...,n} ωX(i, cU , cL). The proof is by induction on i
from n + 1 to 1. Let cU ≥ 0 and cL ≥ 0 be arbitrary. Our inductive hypothesis is that ω(i, cU , cL) ≤
minX⊆{i,...,n} ωX(i, cU , cL). For the base case, where i = n + 1, by definition we have ω(i, cU , cL) =
ωX(i, cU , cL) = 0 for any X ⊆ {i, . . . , n} = ∅. Now we prove the inductive case. Let 1 ≤ i ≤ n be ar-
bitrary and assume that the inductive hypothesis holds for i+1, with every cU ≥ 0 and cL ≥ 0. We conclude
the proof with four cases, all of which follow simply from the definitions and inductive hypothesis.

Case 1: wU
i > cU and wL

i > cL.

ω(i, cU , cL) = ω(i+ 1, cU , cL) ≤ min
X⊆{i+1,...,n}

ωX(i+ 1, cU , cL) = min
X⊆{i,...,n}

ωX(i, cU , cL).

Case 2: wU
i ≤ cU and wL

i > cL.

ω(i, cU , cL) = min
{
ω(i+ 1, cU − wU

i , c
L), ω(i+ 1, cU , cL)

}
≤ min

{
min

X⊆{i+1,...,n}
ωX(i+ 1, cU − wU

i , c
L), min

X⊆{i+1,...,n}
ωX(i+ 1, cU , cL)

}
= min

X⊆{i+1,...,n}
min

{
ωX(i+ 1, cU − wU

i , c
L), ωX(i+ 1, cU , cL)

}
= min

X⊆{i,...,n}
ωX(i, cU , cL).

Case 3: wU
i > cU and wL

i ≤ cL.

ω(i, cU , cL) = max
{
ω(i+ 1, cU , cL − wL

i ) + pi, ω(i+ 1, cU , cL)
}

≤ max
{

min
X⊆{i+1,...,n}

ωX(i+ 1, cU , cL − wL
i ) + pi, min

X⊆{i+1,...,n}
ωX(i+ 1, cU , cL)

}
≤ min

X⊆{i+1,...,n}
max

{
ωX(i+ 1, cU , cL − wL

i ) + pi, ωX(i+ 1, cU , cL)
}

= min
X⊆{i,...,n}

ωX(i, cU , cL).

Case 4: wU
i ≤ cU and wL

i ≤ cL.

ω(i, cU , cL) = min

{
ω(i+ 1, cU − wU

i , c
L),

max
{
ω(i+ 1, cU , cL − wL

i ) + pi, ω(i+ 1, cU , cL)
}}

≤ min


min

X⊆{i+1,...,n}
ωX(i+ 1, cU − wU

i , c
L),

max


min

X⊆{i+1,...,n}
ωX(i+ 1, cU , cL − wL

i ) + pi,

min
X⊆{i+1,...,n}

ωX(i+ 1, cU , cL)




≤ min


min

X⊆{i+1,...,n}
ωX(i+ 1, cU − wU

i , c
L),

min
X⊆{i+1,...,n}

max
{
ωX(i+ 1, cU , cL − wL

i ) + pi, ωX(i+ 1, cU , cL)
}


= min
X⊆{i+1,...,n}

min

{
ωX(i+ 1, cU − wU

i , c
L),

max
{
ωX(i+ 1, cU , cL − wL

i ) + pi, ωX(i+ 1, cU , cL)
}}

= min
X⊆{i,...,n}

ωX(i, cU , cL).

Note that in particular, this implies that ω(1, CU , CL) ≤ minX∈U K(X,CL) = minX∈U maxY ∈L(X) p(Y ),
i.e., ω(1, CU , CL) is a lower bound for BKP. We would also like some idea of how far from optimal it can
be in the worst case. The worst example we were able to find, described in Table 1, achieves a gap of 2,
i.e., the optimal solution has objective value 2ω(1, CU , CL). However, we do not have a proof that 2 is the
worst-case gap. In any case, the gap is significantly better than 2 for all instances we tested computationally,
as detailed in the next section.
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item no. p wU wL

1 1 1 1
2 1 1 1
3 2 2 3

Table 1: An instance with CU = 2 and CL = 3 that has optimal objective value 2 but ω(1, CU , CL) = 1.

4 Computational results
In this section, we compare our algorithm to the method from [DCS20] using computational tests. We call
our algorithm Comb (short for combinatorial) and refer to the algorithm from [DCS20] as DCS. We remark
that there are many other published algorithms capable of solving BKP, e.g., [DeN11, CCLW16, TRS16,
FLMS17, FLMS19, TRD20]. However, the superiority of the DCS algorithm has been well demonstrated by
its authors, so we do not compare our algorithm directly to prior works.

4.1 Implementation
Our implementation of both algorithms is open-source (released under the MIT license) and is available at
https://github.com/nwoeanhinnogaehr/bkpsolver. Scripts to run experiments from this section are included
to ease reproducing our results. We used the C++ programming language and rely on OpenMP 4.5 for
parallelism, Gurobi 9.5 for solving MIPs, and Florian Fontan’s Knapsack Solver (https://github.com/fontanf/
knapsacksolver) for its implementation of the combo algorithm. Our code was compiled with Clang 14 and
run on a Linux machine with four 16-core Intel Xeon Gold 6142 CPUs @ 2.60GHz and 256GB of RAM. We
limited the solvers to use at most 16 threads because the machine was shared with other users and we saw
only marginal increases in performance when using more than 16 threads.

We were unable to obtain either source code or a binary from the authors of the DCS algorithm, but
our reimplementation largely matches the performance reported in the original paper. Of the instances
reported in the literature, our reimplementation solves three additional instances which were not solved by
the original implementation and achieves very similar performance across the whole test set. Any differences
are likely explained by the fact that the original implementation used CPLEX 12.9 and was run on an Intel
i5 CPU @ 3.0 GHz. The original implementation was run using the default CPLEX parameters, but we
used the Gurobi parameters MIPFocus=2, Presolve=2, PreSparsify=1 and Cuts=0 as we found them to
increase performance. Given that the performance of our reimplementation was similar to the performance
reported in their paper, and sometimes even better, we believe that any comparison with our version of the
DCS algorithm is reasonably fair.

As mentioned, both algorithms were run using 16 threads. However, not all parts of the algorithms
were parallelized. Specifically, in the DCS implementation, the only part which is parallelized is the MIP
solver. Since the algorithm spends almost all of the running time within the MIP solver, it is expected
that parallelizing other parts of the algorithm would result in negligible speedup. In the implementation of
our algorithm, we parallelized two parts: the computation of the lower bound ω (by filling in neighbouring
elements of the DP table which do not depend on each other in parallel) and the computation of the
initial lower bound min{LB(c) : 1 ≤ c ≤ n} (by computing LB(c) for all values of c in parallel). For
uncorrelated instances, computing the lower bound takes almost all of the running time, so they are effectively
parallelized. However, for correlated instances most of the time is spent performing the branch-and-bound
search. The branch-and-bound search could be parallelized to speed up this case, but we did not implement
this optimization.

4.2 Instances
Our test set consists of the following groups of instances from the literature:

• CCLW: This group contains 50 instances from [CCLW16] with n ranging from 35 to 55. Weights
and profits are uncorrelated and range between 1 and 100. The lower-level capacity CL is set to some
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fraction of the sum of the weights, and the upper-level capacity CU is randomly chosen in the range
[CL − 10, CL + 10].

• DCS: This group contains 500 instances from [DCS20] with n ranging from 100 to 500. These instances
are generated in the same way as the CCLW instances.

• DeNegre: This group contains 160 instances from [DeN11] with n ranging from 10 to 50. Note that
the original paper only tested instances with n up to 15, but the instances available for download (from
https://coral.ise.lehigh.edu/) contain up to 50 items. Weights and profits are uncorrelated and range
from 1 to 1000. Capacities are relatively large, up to about 15000.

• FMS: This group contains 450 instances from [FMS18] with n ranging from 100 to 500. Upper-level
weights are selected uniformly at random. Lower-level weights and profits are generated according to
nine different classes with varying levels of correlation. For example, the subset-sum class has pi = wL

i

for all i, the strongly correlated class has pi = wL
i + 10 for all i, and the weakly correlated class has

pi ∈ [wL
i − 10, wL

i + 10] selected uniformly at random for all i. For a full description of all instance
classes, we refer the reader to [FMS18]. Capacities are selected the same way as in the CCLW instances.
In our results we split these instances into two groups. FMS-easy contains three classes: uncorrelated,
weakly correlated, and uncorrelated with similar weights. FMS-hard contains the remaining classes:
variants on strongly correlated and subset sum.

• TRS: This group contains 180 instances from [TRS16] with n ranging from 15 to 30 in which all
upper-level weights wU

i are 1. Lower-level weights and profits are uncorrelated and range between 1
and 100. Lower-level capacity ranges up to about 700 and upper level capacity is at most 23.

In addition, we generated 1500 new instances. With these instances we intended to test some cases which
had not been evaluated in the literature. We generated some very large instances (with up to 10000 items),
instances with a smaller or larger weights than reported in the literature, and instances that have cor-
relation between the upper-level weights and the lower-level weights or the profits. Specifically, for each
n ∈ {10, 25, 50, 102, 103, 104}, INS ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} and R ∈ {10, 25, 50, 100, 1000}, we
generated five instances according to five different methods, which we call classes 1-5. All weights and prof-
its were selected uniformly at random in the range [1, R], but for some of the five classes, we equated wL,
wU or p with each other:

1. wL, wU and p are independent (uncorrelated)
2. wL = p but wU is independent (lower subset-sum)
3. wU = p but wL is independent (upper subset-sum)
4. wL = wU = p (both subset-sum)
5. wL = wU but p is independent (equal weights)

The capacities are chosen as follows. Let CL =
⌈
INS/11 ·

∑
i w

L
i

⌉
and choose CU uniformly at random

in the range [CL − 10, CL + 10]. If there is any item with wL
i < CL or wU

i < CU , then we increase the
appropriate capacity so that this is not the case. This is the same way that the capacities are selected in
[CCLW16, DCS20, FMS18], except that we test a smaller range of capacities (excluding instances that would
almost certainly be solved by the initial bound test described in Section 2.2) and we test more capacities in
the range by including half integral values of INS. See Fig. 2 for the results of an experiment that further
motivates choosing the capacities in this way.

Note that the easiest and hardest instances reported in the literature were uncorrelated and lower subset-
sum, respectively [DCS20]. Hence, we expect our new instances to capture both best-case and worst-case
behaviour from the solvers.

4.3 Results
Our results on instances from the literature are summarized in Table 2. To best match the test environment
used for the original DCS implementation, we ran the tests with a time limit of 1 hour, and used the same
parameters for the DCS algorithm as reported by the authors [DCS20]. For each instance group and each
solver, we reported the number of instances solved to optimality (column #Opt), the number of instances
on which the solver took strictly less time than the other solver (column #Best), the average wall-clock
running time in seconds (column Avg) and the maximum wall-clock running time in seconds (column Max).
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DCS Comb
Group #Inst #Opt #Best Avg Max #Opt #Best Avg Max

All 1,340 1,271 55 200.49 3,600 1,324 1,269 44.11 3,600
CCLW 50 50 2 0.21 1.27 50 48 0.04 0.07
DCS 500 500 0 3.87 15.73 500 500 0.7 8.59
DeNegre 160 160 50 0.17 1.62 160 110 0.08 1.73
FMS-easy 150 150 0 13.35 79.85 150 150 0.38 7.1
FMS-hard 300 231 0 882.2 3,600 284 284 195.61 3,600
TRS 180 180 3 0.14 2.04 180 177 0.04 0.05

Table 2: Summary of results for all instances from the literature.

DCS Comb
Class #Opt #Best Avg Max #Opt #Best Avg Max

uncorrelated 50 0 3.66 13.38 50 50 0.64 7.1
weak correlated 50 0 13.49 72.64 50 50 0.39 4.76
strong correlated* 41 0 689.58 3,600 50 50 0.46 5.02
inverse strong corr.* 38 0 919.91 3,600 50 50 1.17 31.11
almost strong corr.* 40 0 815.4 3,600 50 50 0.35 4.28
subset-sum* 35 0 1,087.18 3,600 42 42 588.57 3,600
even-odd subset-sum* 36 0 1,033.98 3,600 42 42 582.37 3,600
even-odd strong corr.* 41 0 747.12 3,600 50 50 0.73 17.06
similar weight uncorr. 50 0 22.89 79.85 50 50 0.12 0.35

Table 3: Summary of results for FMS instances. All classes contain 50 instances. Classes in FMS-hard are
marked with a star (*).

Note that measuring wall-clock time as opposed to CPU time only disadvantages our algorithm, if anything,
because the DCS implementation utilizes all 16 threads for the duration of the tests due to parallelization
within Gurobi. Overall (see row All), our solver had better performance on 1269 of the 1340 instances (about
95%), achieving about 4.5 times better performance on average, and solving 53 of the 72 instances which
DCS did not.

Note that on groups consisting of uncorrelated or weakly correlated instances (all except FMS-hard), the
two solvers appear equally capable of finding optimal solutions, as long as slightly more time is given to
DCS. However, the results for FMS-hard demonstrate that Comb is better at solving hard instances. We
further examine this behavior in Table 3, where it can be seen that DCS struggles with all instances in the
group FMS-hard, where as our algorithm only significantly slows down for subset-sum instances.

In Fig. 1, we plot a performance profile comparing the DCS algorithm to some variants of our algorithm
using instances from the literature. This type of graph plots, for each instance, the ratio of each algorithm’s
performance to the performance of the best algorithm for that instance. The instances are sorted by diffi-
culty. For example, the graph indicates that on about 80% of instances, the DCS algorithm is at most 26

times slower than the best algorithm for that instance, and that Comb is never worse than 4 times slower
than any other algorithm. Note that instances which timed out are counted as 3600 seconds. For a com-
prehensive introduction to performance profiles, see [DM02]. We included several variants of our algorithm
to demonstrate that the main variant (Comb) has the best performance. Comb-Greedy is the variant where
only the greedy lower bound test is performed, i.e., Lines 6 to 7 are removed from Algorithm 2. Variant
Comb-Weak uses the weaker lower bound ωg described in Section 3. From the plot it is clear that Comb
performs significantly better than DCS. Although Comb-Greedy is faster than Comb on a few easy instances,
it appears to be worthwhile to do the more expensive bound test used in Comb (this may be difficult to see
from the graph because Comb and Comb-Greedy are very similar in performance). Comb-Weak does not
have any advantage over Comb as the lower bound is only marginally less expensive to compute but is much
weaker. Yet, Comb-Weak still manages to perform better than DCS in most cases.

We now turn our attention to the new instances. Due to the large number of new instances and high
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Figure 1: Performance profile for all instances from the literature.

difficulty, we used a reduced time limit of 15 minutes (900 seconds) in order to complete the testing in a
timely fashion. For these tests we use the DCS parameters µ = 1000, α = 2, β = 2, γ = 5, and ω = 5, which
are the standard parameters used by the DCS authors for testing their own instances [DCS20]. For a few of
the new instances, Gurobi can sometimes get stuck and be unable to solve some MIPs if cuts are disabled,
so unlike the other tests, we enabled cuts (Cuts=1), even though this reduces speed slightly on the easier
instances.

The results for the new instances are summarized in Tables 4 and 5. Table 4 considers only instances
where our test machine had enough memory to attempt using our solver. We tested the remaining instances
using only the DCS algorithm and summarized the results in Table 5. In both tables, we grouped instances
by n in the upper half of the table and by class in the lower half. In Table 4, we can see that Comb offers a
significant speed improvement for all n and all classes. While the speed of Comb evidently scales more slowly
than DCS with n, it is somewhat unclear what happens at the largest two sizes of n because many instances
do not fit in memory. In the grouping by instance class, we can see that both solvers are roughly equally
capable of solving instances in the uncorrelated, upper subset-sum, and equal weights classes. However,
Comb solved 122 more of the instances in the lower subset-sum and both subset-sum classes than DCS. Out
of the 307 instances where there was insufficient memory to use our algorithm, the DCS algorithm was able
to solve 171 of them, taking an average of 515.33 seconds per instance. Note that none of these 171 instances
had any correlation between the lower-level weights and profits, which are classes where Comb has a distinct
advantage. Extrapolating from the results in Table 4, we suspect that given sufficient memory, our solver
would be able to solve many more of these instances with better performance than DCS.

Unexpectedly, the easiest and hardest types of instances were not uncorrelated and lower subset-sum, as
suggested by prior work. Rather, the easiest classes are in fact equal weights, in which wU = wL but p is
chosen independently, and upper subset-sum, in which wU = p but wL is chosen independently. The hardest
class is both subset-sum, in which wU = wL = p; some instances from this class with only 25 items could
not be solved by DCS. None of these three classes have been studied previously. When given an instance
of the both subset-sum class (or lower subset-sum), our solver typically computes a very tight lower bound,
almost always differing by less than 5% from the optimal solution (see Fig. 2), but due to the extremely
large number of optimal and near-optimal solutions in these instances, the branch-and-bound search must
recurse very deep before it is able to prune any branches. Hence, the algorithm ends up enumerating an
exponential number of branch-and-bound nodes. This behavior is somewhat similar to the DCS algorithm:
when given such an instance, it ends up enumerating an extremely large number of near-optimal solutions,
each found individually by solving a MIP (to get an upper-level solution) and then solving a KP instance
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DCS Comb
n #Inst #Opt #Best Avg Max #Opt #Best Avg Max

10 250 250 101 0.13 3.41 250 149 0.05 0.13
25 250 238 8 58.36 900 250 242 0.05 0.33
50 250 203 1 178.63 900 247 246 17.83 900
100 250 184 3 253.42 900 222 219 104.77 900
1000 167 109 12 302.26 900 136 124 169.82 900
10000 26 23 0 357.43 900 26 26 12.55 25.21

Class

uncorrelated 241 239 25 12.37 900 241 216 0.97 25.21
lower subset-sum 256 174 13 318.09 900 237 224 70.2 900
upper subset-sum 232 232 31 2.58 89.25 232 201 0.8 18.29
both subset-sum 232 130 23 417.68 900 189 166 175.93 900
equal weights 232 232 33 2.12 120.55 232 199 0.67 14.97

Table 4: Summary of results for new instances, grouped by n (upper half) and by class (lower half). This
table only includes instances which our solver could fit in memory; the remaining instances are summarized
in Table 5.

DCS
n #Inst #Opt Avg Max

1000 83 47 422.77 900
10000 224 124 550.41 900

Class

both subset-sum 68 0 900 900
lower subset-sum 44 0 900 900
equal weights 68 66 165.98 900
upper subset-sum 68 62 271.35 900
uncorrelated 59 43 471.94 900

Table 5: Summary of results for DCS on new instances which our solver could not fit in memory, grouped
by n (upper half) and by class (lower half).

(to get a lower-level solution).
Evidently, the main disadvantage of our algorithm is its high memory usage. A simple optimization to

reduce the memory usage is to use 16-bit integers for storing the entries of the lower bound DP table instead
of 32-bit. This is possible for all instances from the literature because the instances are sufficiently small
that it is impossible to achieve profit larger than 216. However, for some of our new instances, a 32-bit
table is required. Our implementation automatically detects whether a 16-bit table can be used and prefers
that option if possible. Other optimizations to reduce memory usage are certainly possible, such as only
storing part of the lower-bound table and recomputing it as needed, or compressing the table in memory.
We decided not to pursue these ideas because they would constitute more of an engineering effort than a
theoretical improvement to the algorithm.

In Fig. 2, we report the results of two additional experiments intended to illustrate some properties of
our algorithm. The first, depicted in the left side of the figure, graphs the approximation ratio of our lower
bound ω for instances from the literature as well as our new instances. The approximation ratio is defined
as ω(1, CU , CL)/OPT where OPT is the optimal objective value of BKP. From the graph, we can see that
we actually have ω(1, CU , CL) = OPT for around 85% of the instances. Moreover, except for two instances
(one being the worst known example, described in Table 1), we always have ω(1, CU , CL)/OPT ≥ 0.8. In the
second experiment, depicted on the right side of the figure, we plot the effect of the knapsack capacities on the
running time. Our motivation for this experiment is twofold: it demonstrates what types of instances can be
solved by the initial bound test, and it justifies our choice to pick similar upper-level and lower-level capacities
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Figure 2: Left: scatter plot of the lower bound approximation ratio ω(1, CU , CL)/OPT for all instances
(sorted by approximation ratio). Right: running time of Comb (darker = longer time) as a function of CU

and CL, for an uncorrelated instance with 100 items.

in our new instances. To create this figure, we generated an instance with 100 items, following the same
generation scheme as the CCLW and DCS instances. We then solved the instance but with many different
values of CU and CL. Although the figure only considers a single instance, the behavior is representative of
the general case. In the figure, darker colors indicate a longer running time, with black indicating about 140
milliseconds and white indicating 0. We can see that there is a threshold reached when the capacities are
sufficiently large where the initial bound test becomes able to solve the problem near-instantly (in less than
10 milliseconds). The most difficult cases have CU and CL very close to each other and as large as possible
without the initial bound test being able to solve the problem.

5 Conclusion
We have described a new combinatorial algorithm for solving BKP that is on average 4.5 times better, and
achieves up to 3 orders of magnitude improvement in runtime over the performance of the previous state-of-
the-art algorithm, DCS. The only disadvantage of our algorithm that we identified in computational testing
is the high memory usage. Because of this, for very large capacity uncorrelated instances, it is generally
a better idea to use DCS. However, even for instances with very large capacity, if there is any correlation
between the lower-level weights and profits, our results indicate that DCS is unlikely to solve the instance,
so it is preferable to use our algorithm on a machine with a large amount of memory, or to use additional
implementation tricks to reduce the memory usage (perhaps with a slight decrease in performance).

For future work, it would be of interest to prove a bound on the approximation factor of our strong lower
bound, and to investigate whether it can be strengthened further. We expect that it would be straightforward
to generalize this work to the multidimensional variant of BKP (i.e., where there are multiple knapsack
constrains at each level), although the issues with high memory usage would likely become worse in this
setting. It may also be straightforward to apply this technique to covering interdiction problems. Beyond
this, we suspect that a similar lower bound and search algorithm can be used to efficiently solve a variety of
interdiction problems.

15



References
[CCLW14] Alberto Caprara, Margarida Carvalho, Andrea Lodi, and Gerhard J Woeginger. A study on

the computational complexity of the bilevel knapsack problem. SIAM Journal on Optimization,
24(2):823–838, 2014.

[CCLW16] Alberto Caprara, Margarida Carvalho, Andrea Lodi, and Gerhard J Woeginger. Bilevel knapsack
with interdiction constraints. INFORMS Journal on Computing, 28(2):319–333, 2016.

[CWZ22] Lin Chen, Xiaoyu Wu, and Guochuan Zhang. Approximation algorithms for interdiction problem
with packing constraints. arXiv preprint arXiv:2204.11106, 2022.

[DCS20] Federico Della Croce and Rosario Scatamacchia. An exact approach for the bilevel knapsack
problem with interdiction constraints and extensions. Mathematical Programming, 183(1):249–
281, 2020.

[Dem20] Stephan Dempe. Bilevel optimization: theory, algorithms, applications and a bibliography. In
Bilevel optimization, pages 581–672. Springer, 2020.

[DeN11] Scott DeNegre. Interdiction and discrete bilevel linear programming. PhD thesis, Lehigh Univer-
sity, 2011.

[DM02] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

[FLMS17] Matteo Fischetti, Ivana Ljubić, Michele Monaci, and Markus Sinnl. A new general-purpose
algorithm for mixed-integer bilevel linear programs. Operations Research, 65(6):1615–1637, 2017.

[FLMS19] Matteo Fischetti, Ivana Ljubic, Michele Monaci, and Markus Sinnl. Interdiction games and
monotonicity, with application to knapsack problems. INFORMS Journal on Computing, 31:390–
410, 2019.

[FMS18] Matteo Fischetti, Michele Monaci, and Markus Sinnl. A dynamic reformulation heuristic for
generalized interdiction problems. European Journal of Operations Research, 267:40–51, 2018.

[KLLS21] Thomas Kleinert, Martine Labbé, Ivana Ljubić, and Martin Schmidt. A survey on mixed-integer
programming techniques in bilevel optimization. EURO Journal on Computational Optimization,
9:100007, 2021.

[LBC22] Leonardo Lozano, David Bergman, and Andre A Cire. Constrained shortest-path reformulations
for discrete bilevel and robust optimization. arXiv preprint arXiv:2206.12962, 2022.

[MPT99] Silvano Martello, David Pisinger, and Paolo Toth. Dynamic programming and strong bounds for
the 0-1 knapsack problem. Management Science, 45(3):414–424, 1999.

[Pis95] David Pisinger. An expanding-core algorithm for the exact 0–1 knapsack problem. European
Journal of Operational Research, 87(1):175–187, 1995.

[Pis05] David Pisinger. Where are the hard knapsack problems? Computational Operations Research,
32:2271–2284, 2005.

[SS20] J Cole Smith and Yongjia Song. A survey of network interdiction models and algorithms. Euro-
pean Journal of Operational Research, 283(3):797–811, 2020.

[TRD20] Sahar Tahernejad, Ted K Ralphs, and Scott T DeNegre. A branch-and-cut algorithm for mixed
integer bilevel linear optimization problems and its implementation. Mathematical Programming
Computation, 12(4):529–568, 2020.

[TRS16] Yen Tang, Jean-Philippe P. Richard, and Jonathan Cole Smith. A class of algorithms for mixed-
integer bilevel min–max optimization. Journal of Global Optimization, 66:225–262, 2016.

[VS52] Heinrich Von Stackelberg. The theory of the market economy. Oxford University Press, 1952.

16


	Introduction
	A combinatorial algorithm for BKP
	The bound test
	Computing initial bounds

	Lower bound
	Computational results
	Implementation
	Instances
	Results

	Conclusion

